
http://www7b.software.ibm.com/cgi-bin/wsdd/printerfriendly.cgi

1 of 11 16.10.2002 11:41

Hello World Portlet Rendered with JSP for WebSphere Portal Version 4.1

Table of Contents

Creating the directory structure
Creating the Java code
Compiling the code
Creating the JAR file
Creating the JSP file
Creating the deployment descriptors
Creating the WAR file
Deploying the WAR file
Adding the portlet to the Welcome page
I18N and multiple meta languages
An introduction to the portlet tag library
Updating a deployed portlet

Ron Lynn
IBM Hacker
IBM Santa Teresa Labs
June, 2002

© 2002 International Business Machines Corporation. All rights reserved.

Introduction
In our first portal based Hello World article, we've seen how to create a portlet in Java that spits out "Hello world!".
While this is instructive, it's not a pragmatic approach to developing portlets. So, what is wrong with it? One problem is
the subject of this article. In the simplest "Hello World!" program, the Java code contains both the text "Hello, world!"
and the logic for displaying it. It would be far better if we could separate the logic of the portlet from how it gets
rendered. This allows us to create portlets that support different meta languages and national languages. Today we
might not have a requirement to create a portlet for Wireless Markup Language (WML) or in the German language.
But what about tomorrow? We may also be working with a graphic designer who frequently changes the look and feel.
If our rendering is done in Java code, it takes a developer and a recompilation to change it. The solution is to render
your portlet with JSP. This allows you to create separate JSP files for each supported meta or national language. The
designer can have full control over the JSP and change it without ever needing a developer. Let's look at what it takes
to build a portlet that calls a JSP for rendering and then look at the JSP and a few of the tags from the portlet tag
library. We'll create our deployment descriptors, package everything together and deploy it into the portal.

Creating the directory structure
To start off, you must create a directory structure in which you store your portlet. Here's what we'll use for this portlet:

helloWorld\com\ibm\portlets\sample - where your source will go.
helloWorld\WEB-INF - where the deployment descriptor is stored.
helloWorld\WEB-INF\lib - where the JAR file will go.
helloWorld\jsp - where the JSP files are stored.

Note: All directory and environment references are based on Windows convention. You will need to adjust these
accordingly for Unix systems.

Creating the Java code
The sample directory is where we will put our Java source file. Create a file named HelloWorldFromJSP.java in
the sample directory and open it in your favorite text editor. Here's the class that you will need to type (or cut and
paste) into the HelloWorldFromJSP.java file:

package com.ibm.portlets.sample;

//portlet APIs
import org.apache.jetspeed.portlet.*;
import org.apache.jetspeed.portlets.*;

//Java stuff

http://www7b.software.ibm.com/cgi-bin/wsdd/printerfriendly.cgi

2 of 11 16.10.2002 11:41

import java.io.*;

public class HelloWorldFromJSP extends AbstractPortlet {

 public void service(PortletRequest request, PortletResponse response)
 throws PortletException, IOException {

 // Include the view jsp
 getPortletConfig().getContext().include("/jsp/view.jsp", request, response);
 }
}

Compiling the code
After we have created the source file we are ready to compile the Java code. The script below can be used in a batch
file to compile the portlet. We start by defining some environment variables, such as environment variables that define
where our Java is installed (JAVA_HOME). It's usually a good idea to compile this using the JDK provided with the
WebSphere Application Server, since that is the environment we will be running under. We also need to set the PATH
environment variable to include the location where the Java compiler is installed. Set the variable LIBPATH that will
point to the directory where the WebSphere JAR files are found. Next, we set a variable called CP for our compilation
classpath. The CP variable could be built on a single line, but we broke it up to show the various JAR files required.
We then invoke the Java compiler and compile our code. This assumes we are in the helloWorld directory. Adjust
your directory paths as appropriate for your installation.

set JAVA_HOME=C:\WebSphere\AppServer\java
set PATH=%JAVA_HOME%\bin
set LIBPATH=C:\WebSphere\AppServer\lib
set CP=.
set CP=%CP%;%LIBPATH%\j2ee.jar
set CP=%CP%;%LIBPATH%\websphere.jar
set CP=%CP%;%LIBPATH%\app\wpsportlets.jar
set CP=%CP%;%LIBPATH%\app\wps.jar
set CP=%CP%;%LIBPATH%\app\portlet-api.jar

javac -classpath %CP% com\ibm\portlets\sample\HelloWorldFromJSP.java

If this doesn't compile, you must fix the errors before moving on. Some common errors are:

Typos - mistyped class names, paths, variable names.
File name - the file name and the class name must match in our case the file name is
HelloWorldFromJSP.java. and the class name it HelloWorldFromJSP. If you have changed one,
change the other.
Editor woes - make sure your editor really saves the file as text. An editor like WordPad does not save as text
by default.

Creating the JAR file
Once the Java source is compiled, we need to create a JAR file in the WEB-INF\lib directory. Again, assume we are
in the helloWorld directory. These statements could be included as part of a batch file if you created above. It relies on
having the PATH set to get to the jar program.

set JAVA_HOME=C:\WebSphere\AppServer\java
set PATH=%JAVA_HOME%\bin

jar -cv0f .\WEB-INF\lib\HelloWorldFromJSP.jar com/ibm/portlets/sample/*.class

Creating the JSP file
Once the Java source is compiled and the JAR file is created, we can turn our attention to the JSP file. The JSP
directory is where we will put our JSP source file. Create a file named view.jsp in the JSP directory and open it in
your favorite text editor. Here's the JSP code that you will need to type (or cut and paste) into the view.jsp file:

Hello world from the JSP!

This is simple enough. Let's go ahead and get this packaged up and running. We'll come back to the JSP after that to
see what more we can do to add support for different national and meta languages.

Creating the deployment descriptors

http://www7b.software.ibm.com/cgi-bin/wsdd/printerfriendly.cgi

3 of 11 16.10.2002 11:41

You will need to create two XML files:

helloWorld\WEB-INF\web.xml - the web deployment descriptor.
helloWorld\WEB-INF\portlet.xml - the portlet deployment descriptor.

web.xml - the web deployment descriptor

The web deployment descriptor is needed for WebSphere Portal. Portlets extend Servlets now, so the web
deployment descriptor is needed to declare the Servlet (portlet) class.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web
 Application 2.2//EN"
 "http://java.sun.com/j2ee/dtds/web-app_2.2.dtd">
<web-app id="HelloWorldFromJSPWebApp">
 <display-name>HelloWorldFromJSPPortlet</display-name>
 <servlet id="Servlet_1">
 <servlet-name>HelloWorldFromJSP</servlet-name>
 <servlet-class>com.ibm.portlets.sample.HelloWorldFromJSP</servlet-class>
 </servlet>
 <servlet-mapping id="ServletMapping_1">
 <servlet-name>HelloWorldFromJSP</servlet-name>
 <url-pattern>/HelloWorldFromJSP/*</url-pattern>
 </servlet-mapping>
</web-app>

portlet.xml - the portlet deployment descriptor.

The portlet deployment descriptor defines the portlet to the portal. Each portlet is mapped to a Servlet defined in the
web deployment descriptor by way of the href attribute on the portlet element. These references are denoted in red. A
portlet must define a unique id that each concrete portlet can reference. Each concrete portlet references a portlet
using the given id in the href attribute of the concrete-portlet element. These references are denoted in purple.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE portlet-app-def PUBLIC "-//IBM//DTD Portlet Application
 1.1//EN" "portlet_1.1.dtd">
<portlet-app-def>
 <portlet-app uid="com.ibm.portlets.sample.HelloWorldFromJSP.1">
 <portlet-app-name>HelloWorldFromJSP0Portlet</portlet-app-name>
 <portlet href="WEB-INF/web.xml#Servlet_1" id="Portlet_1">
 <portlet-name>HelloWorldFromJSP</portlet-name>
 <cache>
 <expires>0</expires>
 <shared>no</shared>
 </cache>
 <allows>
 <maximized/>
 <minimized/>
 </allows>
 <supports>
 <markup name="html">
 <view/>
 </markup>
 </supports>
 </portlet>
 </portlet-app>
 <concrete-portlet-app uid="com.ibm.portlets.sample.HelloWorldFromJSP.1.2">
 <portlet-app-name>Concrete HelloWorldFromJSP</portlet-app-name>
 <context-param>
 <param-name>Author</param-name>
 <param-value>tcat@us.ibm.com</param-value>
 </context-param>
 <concrete-portlet href="Portlet_1">
 <portlet-name>HelloWorldFromJSP</portlet-name>
 <default-locale>en</default-locale>
 <language locale="en">
 <title>Hello World from JSP</title>
 </language>
 </concrete-portlet>
 </concrete-portlet-app>
</portlet-app-def>

http://www7b.software.ibm.com/cgi-bin/wsdd/printerfriendly.cgi

4 of 11 16.10.2002 11:41

Many things can go wrong when creating these XML files. You will not find out until you attempt to deploy the portlet
into the portal. Here's some things to double check.

Verify that for every XML element you have a closing element.
Check for mistyped class names, especially for this example if you named your class something other than
HelloWorldFromJSP
Make sure your id and href attributes match.
Make sure your editor really saves the file as text.

Creating the WAR file
Finally, we are ready to create the WAR file for distribution. We'll use the standard jar command to build the WAR
file. We run this from the helloWorld directory.

set JAVA_HOME=C:\WebSphere\AppServer\java
set PATH=%JAVA_HOME%\bin

jar -cf HelloWorldFromJSP.war WEB-INF jsp

Deploying the WAR file
The following steps walk us through the process of deploying the WAR file into the portal.

Login to WebSphere Portal as the portal administrator -- wpsadmin.1.
Select the Portal Administration page group.2.
Select the Portlets page and the Install Portlets portlet. It should be selected for you.

Figure 1. Install Portlets administration page

3.

Click the button.4.

Find the location of the WAR file, select it, and click .

Figure 2. File selection dialog

5.

http://www7b.software.ibm.com/cgi-bin/wsdd/printerfriendly.cgi

5 of 11 16.10.2002 11:41

Click , this could take some time, so wait for it.6.

Verify Portlet is HelloWorldFromJSP, click , again wait for it.

Figure 3. Portlet install verification screen

7.

Finally you should see confirmation that .8.

If you get some sort of error during deployment, this usually means that you've made a mistake in one of your xml
files. Take a look in the latest log file:
%WPS_HOME%\log\wps_YYYY.MM.DD-HH.MM.SS.log

Some common mistakes made with the XML files are listed in section 5 you might also check the following:

The XML declaration must be first line in file (no whitespace)
The XML files have the correct names, in the correct case

Adding the portlet to the Welcome page

http://www7b.software.ibm.com/cgi-bin/wsdd/printerfriendly.cgi

6 of 11 16.10.2002 11:41

Select the Work with Pages page group.1.
On the Edit Layout and Content page, under Page Group, select the Home page group.2.
Then select the Welcome page.

Figure 4. Edit layout and content screen

3.

Click 4.

Search on Name Contains: Hello, click 5.

Click beside HelloWorldFromJSP portlet, click

Figure 5. Search for portlets

6.

Highlight HelloWorldFromJSP, click , the add portlet icon

Figure 6. Add portlet to page screen

7.

http://www7b.software.ibm.com/cgi-bin/wsdd/printerfriendly.cgi

7 of 11 16.10.2002 11:41

Click to reactivate to page.8.
Select Home in drop down to view portlet. We've placed our portlet on the bottom left hand side of the
Welcome page.

Figure 7. Portal displaying our portlet

9.

http://www7b.software.ibm.com/cgi-bin/wsdd/printerfriendly.cgi

8 of 11 16.10.2002 11:41

I18N and multiple meta languages
I18N is the common abbreviation for internationalization. Internationalization refers to designing an application, our
portlet, in such a way that it can be adapted to different languages and regions without code changes. With our
current implementation, we have no way to support multiple national languages or multiple meta languages. Portlets
that use JSP for rendering are given two types of support for I18N, one of which also helps with multiple meta
languages.

This first support is for multiple JSPs to render our portlet. This allows a portet to have a different layout, colors,
images, text, et cetera for each supported language, region and meta language.

The directory structure we chose for our JSP to live in is \jsp\view.jsp. The portal will use this directory as a base
to search for a best fit JSP. Here's the search order that will be searched for a web browser set to the US english
local:

\jsp\html\en_US\view.jsp
\jsp\html\en\view.jsp
\jsp\html\view.jsp
\jsp\view.jsp

The first view.jsp found will be used for rendering the portlet. This allows us to specify different JSPs for different
national languages. For example, we could have a view.jsp in the \jsp\html\de\ directory. It would read, "Hallo
Welt" (which I hope is "Hello World" in German). The general idea is that each language and region could have it's
own JSP providing specialized layout and verbage. What about differnt meta languages? you can see from the search
path above that \html\ is specified. We could have JSPs for our portlet in the following paths:

\jsp\html\en_US\view.jsp
\jsp\html\en\view.jsp
\jsp\html\de\view.jsp

http://www7b.software.ibm.com/cgi-bin/wsdd/printerfriendly.cgi

9 of 11 16.10.2002 11:41

\jsp\html\view.jsp
\jsp\wml\en_US\view.jsp
\jsp\wml\en\view.jsp
\jsp\wml\de\view.jsp
\jsp\wml\view.jsp
\jsp\view.jsp

This would allow us to come in from a WML browser and the portlet would use the JSPs in the \wml\ directory
structure for searching.

So, that's the first level of support for I18N. The second level of help is in the form of Java resource bundles. For the
purposes of our portlet, Java resouce bundles give us the ability to put strings into properties files that are easily
translated apart from the JSP code. This allows one to have the same layout, but have the text in the correct national
language. To do this, we need to take a peek at the portlet tag library provided by WebSphere Portal

An introduction to the portlet tag library
The portlet tag library provides JSP tags to access a variety of portlet data, tags for conditional branching in the JSP,
and tags for other utility methods. To utilize the portlet tag library the following directive is required at the beginning of
the JSP:

<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>

This gives us access to the portlet API using the JSP tag prefix portletAPI. This prefix is arbitrary, but appropriate
for our purposes. Following this definition, you would usually call the following command to initialize a few variables
that are frequently used in a portlet's JSP:

<portletAPI:init/>

The init command initializes the following variables:

portletRequest1.
portletResponse2.
portletConfig3.

To get access to a text string in a resource bundle, we use the text method of the tag library:

<portletAPI:text bundle="nls.labels" key="helloWorldLabel">
 Hello world from the JSP!
</portletAPI:text>

This attempts to get the "helloWorldLabel" from the labels properties file. If no suitable properties file is found, then the
default is to render what is between the opening and closing text tag, in our case, "Hello world from the JSP!". The
properties files are searched the in the same fashion as standard ResourceBundles are searched in Java:

<basename>_<lang>_<country>_<variant>
<basename>_<lang>_<country>
<basename>_<lang>
<basename>

For our purposes, we will create a couple of properties files:

/WEB-INF/classes/nls/labels_en.properties
/WEB-INF/classes/nls/labels_de.properties

They will have the following content:

/WEB-INF/classes/nls/labels_en.properties:
helloWorldLabel=Hello World!

/WEB-INF/classes/nls/labels_de.properties:
helloWorldLabel=Hallo Welt!

To sum up, our JSP file, /jsp/view.jsp, has the following content:

<%@ taglib uri="/WEB-INF/tld/portlet.tld" prefix="portletAPI" %>

<portletAPI:init/>
<portletAPI:text bundle="nls.labels" key="helloWorldLabel">
 Hello world from the JSP!
</portletAPI:text>

http://www7b.software.ibm.com/cgi-bin/wsdd/printerfriendly.cgi

10 of 11 16.10.2002 11:41

This along with the two properties files give us the following when our language is set to English in our html browser:

Figure 8. Hello World portlet in English

Then when our language is set to German in our html browser, the portlet will produce:

Figure 9. Hello World portlet in German

Pretty nifty. Ah, but you ask how I updated the portlet that we had already deployed into the portal. One could just
delete the portlet and redeploy. But in a real portal environment, you'd lose user data and deployment information. The
last section of this article will briefly cover how to update a deployed portlet.

Updating a deployed portlet
Login to the portal as the portal administrator -- wpsadmin.1.
Select the Portal Administration page group.2.
Select the Portlets page and the Manage Portlet Applications portlet

Figure 10. Manage portlets screen

3.

Click the button.4.

Click the button.5.

http://www7b.software.ibm.com/cgi-bin/wsdd/printerfriendly.cgi

11 of 11 16.10.2002 11:41

Find the location of WAR file, select it, and click .6.
Click , this could take some time, so wait for it.7.

Verify Portlet is HelloWorldFromJSP, click , again wait for it to complete.8.

Finally you should see confirmation that says, 9.

Conclusion
There it is. That's how you render your portlet using a JSP. If you worked along with this article, you wrote, compiled
and packaged Java code for a portlet. You then created the deployment descriptors and packaged the portlet for
distribution and deployment. You then deployed the portlet into your portal. Finally you rewrote the JSP,
internationalized and updated the deployed portlet. In the course of portlet development you'll do this time and again.
Good luck and happy hacking!

References
Portlet Developer's Guide

Related information
WebSphere Portal
WebSphere Developer Domain Portal Zone

Top of page

About the author
Ron Lynn (a.k.a. tcat) is an Advisory software engineer at IBM's Santa Teresa Lab. Ron has
worked on both sides of knowledge management. He enjoys playing with his 6 month old son
Rowan, making wooden toys for said son, and futzing with Linux on his PlayStation 2. You can
contact Ron at tcat@us.ibm.com.

Do you want to discuss this article with others? Go to the our WebSphere Developer Domain newsgroup.

IBM, DB2, and WebSphere are trademarks or registered trademarks of IBM Corporation in the United States, other countries, or both.

Windows and Windows NT are registered trademarks of Microsoft Corporation in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Other company, product, and service names may be trademarks or service marks of others.

IBM copyright and trademark information

Printing this page: Microsoft Internet Explorer versions prior to 5.5 may split graphics and tables across printed
pages. This is a known problem with Internet Explorer that has been fixed in version 5.5 SP1.

